Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
  • Info for
    • Authors
    • Subscribers
    • Institutions
    • Advertisers
  • About Us
    • About Us
    • Editorial Board
    • Index/Abstracts
  • Connect
    • Feedback
    • Help
  • Alerts
  • Free Issue
  • Call for Papers
  • Other Publications
    • UWP
    • Land Economics
    • Landscape Journal
    • Native Plants Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Ecological Restoration
  • Other Publications
    • UWP
    • Land Economics
    • Landscape Journal
    • Native Plants Journal
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Ecological Restoration

Advanced Search

  • Home
  • Content
    • Current
    • Archive
  • Info for
    • Authors
    • Subscribers
    • Institutions
    • Advertisers
  • About Us
    • About Us
    • Editorial Board
    • Index/Abstracts
  • Connect
    • Feedback
    • Help
  • Alerts
  • Free Issue
  • Call for Papers
  • Follow uwp on Twitter
  • Visit uwp on Facebook
Research ArticleResearch Article

Biochar Application and Soil Transfer in Tree Restoration: A Meta-Analysis and Field Experiment

Edith Juno and Inés Ibáñez
Ecological Restoration, September 2021, 39 (3) 158-167; DOI: https://doi.org/10.3368/er.39.3.158
Edith Juno
School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Inés Ibáñez
School for Environment and Sustainability, University of Michigan, 440 Church St, Ann Arbor, Michigan, 48109, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. ↵
    1. Abel, S.,
    2. A. Peters,
    3. S. Trinks,
    4. H. Schonsky,
    5. M. Facklam and
    6. G. Wessolek
    . 2013. Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma 202–203:183–191.
    OpenUrl
  2. ↵
    1. Amaranthus, M.P. and
    2. D.A. Perry
    . 1987. Effect of soil transfer on ectomycorrhiza formation and the survival and growth of conifer seedlings on old, nonreforested clear-cuts. Canadian Journal of Forest Research 17:944–950.
    OpenUrl
  3. ↵
    1. Atkinson, C.J.,
    2. J.D. Fitzgerald and
    3. N.A. Hipps
    . 2010. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant and Soil 337:1–18.
    OpenUrlCrossRefWeb of Science
  4. ↵
    1. Aung, A.,
    2. S.H. Han,
    3. W.B. Youn,
    4. L. Meng,
    5. M.S. Cho and
    6. B.B. Park
    . 2018. Biochar effects on the seedling quality of Quercus serrata and Prunus sargentii in a containerized production system. Forest Science and Technology 14:112–118.
    OpenUrl
  5. ↵
    1. Barnes, B. and
    2. W. Wagner
    . 2004. Michigan Trees, Revised and Updated: A Guide to the Trees of the Great Lakes Region. Ann Arbor, MI: University of Michigan Press.
  6. ↵
    1. Batson, S. and
    2. H. Burton
    . 2016. A systematic review of methods for handling missing variance data in meta-analysis of interventions in type 2 diabetes mellitus. PlosOne 11:e0164827.
    OpenUrl
  7. ↵
    1. Biederman, L.A. and
    2. W.A. Harpole
    . 2013. Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. GCB Bioenergy 5:202–214.
    OpenUrl
  8. ↵
    1. Bieser, J.M.H. and
    2. S.C. Thomas
    . 2019. Biochar and high-carbon wood ash effects on soil and vegetation in a boreal clearcut. Canadian Journal of Forest Research 49:1124–1134.
    OpenUrl
  9. ↵
    1. Bingham, M.A. and
    2. S.W. Simard
    . 2011. Do mycorrhizal network benefits to survival and growth of interior Douglas-fir seedlings increase with soil moisture stress?: Networks Facilitate Water-Stressed Seedlings. Ecology and Evolution 1:306–316.
    OpenUrl
  10. ↵
    1. Botton, B. and
    2. M. Chalot
    . 1999. Nitrogen Assimilation: Enzymology in Ectomycorrhizas. Pages 333–372 in A. Varma and B. Hock B (eds), Mycorrhiza: Structure, Function, Molecular Biology and Biotechnology. Berlin, Germany: Springer-Verlag.
  11. ↵
    1. Bruun, E.W.,
    2. C.T. Petersen,
    3. E. Hansen,
    4. J.K. Holm and
    5. H. Hauggaard-Nielsen
    . 2014. Biochar amendment to coarse sandy subsoil improves root growth and increases water retention. Soil Use and Management 30:109–118.
    OpenUrlGeoRef
  12. ↵
    1. Budi, S.W. and
    2. L. Setyaningsih
    . 2013. Arbuscular mycorrhizal fungi and biochar improved early growth of Neem (Melia azedarach Linn.) seedling under Greenhouse conditions. Jurnal Manajemen Hutan Tropika 19:103–110.
    OpenUrl
  13. ↵
    1. Chazdon, R.L.,
    2. P.H.S. Brancalion,
    3. L. Laestadius,
    4. A. Bennett-Curry,
    5. K. Buckingham,
    6. C. Kumar,
    7. J. Molle-Rocek,
    8. I.C. Guimaraes and
    9. S.J. Wilson
    . 2016. When is a forest a forest? Forest concepts and definitions in the era of forest and landscape restoration. Ambio 45:538–550.
    OpenUrlCrossRefPubMed
  14. ↵
    1. Cho, M.S.,
    2. L. Meng,
    3. J.H. Song,
    4. S.H. Han,
    5. K. Bae,
    6. B.B. Park
    . 2017. The effects of biochars on the growth of Zelkova serrata seedlings in a containerized seedling production system. Forest Science and Technology 13:25–30.
    OpenUrl
  15. ↵
    1. Drake, J.A.,
    2. T.R. Cavagnaro,
    3. S.C. Cunningha,
    4. W.R. Jackson and
    5. A.F. Patti
    . 2016. Does Biochar Improve Establishment of Tree Seedlings in Saline Sodic Soils? Land Degradation and Development 27:52–59.
    OpenUrl
  16. ↵
    1. Fagbenro, J.A.,
    2. S.O. Oshunsanya and
    3. O.A. Onawumi
    . 2013. Effect of saw dust biochar and NPK 15: 15: 15 inorganic fertilizer on Moringa oleifera seedlings grown in an oxisol. Agrosearch 13:57–68.
    OpenUrl
  17. ↵
    1. Grossnickle, S.C
    . 2012. Why seedlings survive: Influence of plant attributes. New Forests 43:711–738.
    OpenUrl
  18. ↵
    1. Grove, S.,
    2. N.P. Saarman,
    3. G.S. Gilbert,
    4. B. Faircloth,
    5. K.A. Haubensak and
    6. I.M. Parker
    . 2019. Ectomycorrhizas and tree seedling establishment are strongly influenced by forest edge proximity but not soil inoculum. Ecological Applications 29:e01867.
    OpenUrl
  19. ↵
    1. Gurevitch, J. and
    2. L.V. Hedges
    . 1999. Statistical Issues in Ecological Meta-analyses. Ecology 80:1142–114.
    OpenUrlCrossRefWeb of Science
  20. ↵
    1. Hammer, E.C.,
    2. Z. Balogh-Brunstad,
    3. I. Jakobsen,
    4. P.A. Olsson,
    5. S.L.S. Stipp and
    6. M.C. Rillig
    . 2014. A mycorrhizal fungus grows on biochar and captures phosphorus from its surfaces. Soil Biology and Biochemistry 77:252–260.
    OpenUrl
  21. ↵
    1. Hammitt, W.E. and
    2. B.V. Barnes
    . 1989. Composition and Structure of an Old-Growth Oak-Hickory Forest in Southern Michigan Over 20 Years. Seventh Central Hardwood Forest Conference, Carbondale, IL-USA, March 5–8. Available at: www.ncrs.fs.fed.us/pubs/ch/ch07/CHvolume07page247.pdf.
  22. ↵
    1. Hardie, M.,
    2. B. Clothier,
    3. S. Bound,
    4. G. Oliver and
    5. D. Close
    . 2014. Does biochar influence soil physical properties and soil water availability? Plant and Soil 376:347–361.
    OpenUrl
  23. ↵
    1. Hawkins, B.J.,
    2. M.D. Jones and
    3. J.M. Kranabetter
    . 2015. Ectomycorrhizae and tree seedling nitrogen nutrition in forest restoration. New Forests 46:747–771.
    OpenUrl
    1. Harley, J.L. and
    2. S.E. Smith
    . 2008. Mycorrhizal symbiosis. London, UK: Academic Press.
  24. ↵
    1. Hedges, L.V. and
    2. O. Ingram
    . 1985. Statistical Methods for Meta-Analysis. Orlando, FL: Academic Press.
    1. Hobbs, R.J. and
    2. J.A. Harris
    . 2001. Restoration Ecology: Repairing the Earth’s Ecosystems in the New Millennium. Restoration Ecology 9:239–246.
    OpenUrl
  25. ↵
    1. Ibáñez, I. and
    2. S. McCarthy-Neumann
    . 2016. Effects of mycorrhizal fungi on tree seedling growth: quantifying the parasitismmutualism transition along a light gradient. Canadian Journal of Forest Research 46:48–57.
    OpenUrl
  26. ↵
    1. Ishida, T.A.,
    2. K. Nara and
    3. T. Hogetsu
    . 2007. Host effects on ectomycorrhizal fungal communities: insight from eight host species in mixed conifer–broadleaf forests. New Phytologist 174:430–440.
    OpenUrlCrossRefPubMedWeb of Science
  27. ↵
    1. Jaafar, N.M
    . 2014. Biochar as a Habitat for Arbuscular Mycorrhizal Fungi. Pages 297–311 in Z.M. Solaiman, L.K., Abbott and A. Varma (eds) Mycorrhizal Fungi: Use in Sustainable Agriculture and Land Restoration. Soil Biology Vol. 41. Berlin, Germany: Springer.
    OpenUrl
  28. ↵
    1. Jeffery, S.,
    2. F.G.A. Verheijen,
    3. M. van der Velde and
    4. A.C. Bastos
    . 2011. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agriculture, Ecosystems and Environment 144:175–18.
    OpenUrl
  29. ↵
    1. Laird, D.,
    2. P. Fleming,
    3. B. Wang,
    4. R. Horton and
    5. D. Karlen
    . 2010. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 158:436–442.
    OpenUrlCrossRefGeoRefWeb of Science
  30. ↵
    1. Lehmann, J. and
    2. S. Joseph
    . 2009. Biochar for environmental management: An introduction. Pages 1–10 in J. Lehmann and S. Joseph (eds) Biochar for Environmental Management: Science and Technology. Sterling, VA: Earthscan.
  31. ↵
    1. Lehmann, J.,
    2. M. Rillig,
    3. J. Thies,
    4. C.A. Masiello,
    5. W.C. Hockaday and
    6. D. Crowley
    . 2011. Biochar effects on soil biota—A review. Soil Biology and Biochemistry 43:1812–1836.
    OpenUrl
  32. ↵
    1. Lima, S.L.,
    2. S. Tamiozzo,
    3. C. Palomin,
    4. F.A. Petter and
    5. B.H. Marimon-Junior
    . 2015. Interactions of Biochar and Organic Compound for Seedlings Production of Magonia pubescens A. St. Hil. Revista Árvore 39:655–661.
    OpenUrl
  33. ↵
    1. Major, J.,
    2. J. Lehmann,
    3. M. Rondo and
    4. C. Goodale
    . 2010. Fate of soilapplied black carbon: Downward migration, leaching and soil respiration. Global Change Biology 16:1366–1379.
    OpenUrlCrossRefWeb of Science
  34. ↵
    1. Miller, P.C
    . 1983. Comparison of Water Balance Characteristics of Plant Species in “Natural” Versus Modified Ecosystems. Pages 188–212 in H.A. Mooney and M. Godron (eds) Disturbance and Ecosystems. Ecological Studies (Analysis and Synthesis) Vol. 44. Berlin; Heidelberg, Germany: Springer.
    OpenUrl
    1. Neuenkamp, L.,
    2. S. Prober,
    3. J.N. Price,
    4. M. Zobe and
    5. R.J. Standish
    . 2019. Benefits of mycorrhizal inoculation to ecological restoration depend on plant functional type, restoration context and time. Fungal Ecology 40:140–149.
    OpenUrl
    1. NOAA
    . 2020. National Climate Center. www.ncdc.noaa.gov/climate-information.
  35. ↵
    1. Noyce, G.,
    2. T. Jones,
    3. R. Fulthorpe and
    4. N. Basiliko
    . 2017. Phosphorus uptake and availability and short-term seedling growth in three Ontario soils amended with ash and biochar. Canadian Journal of Soil Science CJSS-2017-0007. doi.org/10.1139/CJSS-2017-0007.
  36. ↵
    1. Obia, A.,
    2. J. Mulder,
    3. V. Martinsen,
    4. G. Cornelissen and
    5. T. Børresen
    . 2016. In situ effects of biochar on aggregation, water retention and porosity in light-textured tropical soils. Soil and Tillage Research 155:35–44.
    OpenUrlCrossRef
    1. O’Brien, M.J.,
    2. C.E. Gomola and
    3. T.R. Horto
    . 2011. The effect of forest soil and community composition on ectomycorrhizal colonization and seedling growth. Plant and Soil 341:321–331.
    OpenUrl
  37. ↵
    1. Oliet, J.A. and
    2. D.F. Jacobs
    . 2012. Restoring forests: Advances in techniques and theory. New Forests 43:535–541.
    OpenUrl
  38. ↵
    1. Parker, W.C.,
    2. D.C. Dey,
    3. S.G. Newmaster,
    4. K.A. Elliott and
    5. E. Boysen
    . 2001. Managing succession in conifer plantations: converting young red pine (Pinus resinosa Ait.) plantations to native forest types by thinning and underplanting. The Forestry Chronicle 77:721–734.
    OpenUrl
  39. ↵
    1. Piñeiro, J.,
    2. F.T. Maestre,
    3. L. Bartolomé and
    4. A. Valdecantos
    . 2013. Ecotechnology as a tool for restoring degraded drylands: A meta-analysis of field experiments. Ecological Engineering 61:133–144.
    OpenUrl
  40. ↵
    1. Reverchon, F.,
    2. H. Yang,
    3. T.Y. Ho,
    4. G. Yan,
    5. J. Wang,
    6. Z. Xu,
    7. C. Chen and
    8. D. Zhang
    . 2015. A preliminary assessment of the potential of using an acacia—biochar system for spent mine site rehabilitation. Environmental Science and Pollution Research 22:2138–2144.
    OpenUrl
  41. ↵
    1. Simard, S.W.,
    2. M.D. Jones and
    3. D.M. Durall
    . 2003. Carbon and Nutrient Fluxes Within and Between Mycorrhizal Plants. Pages 33–74 in M.G.A. van der Heijden and I.R. Sanders (eds) Mycorrhizal Ecology Ecological Studies (Analysis and Synthesis). Vol. 157. Berlin, Heidelberg, Germany: Springer.
    OpenUrl
  42. ↵
    1. Smith, S.E. and
    2. D.J. Read
    . 2010. Mycorrhizal symbiosis. New York, NY: Academic Press–Elsevier.
  43. ↵
    1. Solaiman, Z.M.,
    2. P. Blackwell,
    3. L.K. Abbott and
    4. P. Storer
    . 2010. Direct and residual effect of biochar application on mycorrhizal root colonisation, growth and nutrition of wheat. Soil Research 48:546–554.
    OpenUrl
  44. ↵
    1. Spokas, K.A.,
    2. B. Cantrell,
    3. J.M. Novak,
    4. D.W. Archer,
    5. J.A. Ippolito,
    6. H.P. Collins and
    7. K.A. Nichols
    . 2012. Biochar: A Synthesis of Its Agronomic Impact beyond Carbon Sequestration. Journal of Environment Quality 41:973–989.
    OpenUrl
  45. ↵
    1. Sujeeun, L. and
    2. S.C. Thomas
    . 2017. Potential of Biochar to Mitigate Allelopathic Effects in Tropical Island Invasive Plants: Evidence from Seed Germination Trials. Tropical Conservation Science 10:1940082917697264. doi.org/10.1177/1940082917697264.
  46. ↵
    1. Sun, F. and
    2. S. Lu
    . 2013. Biochars improve aggregate stability, water retention, and pore-space properties of clayey soil. Journal of Plant Nutrition and Soil Science 177:26–33.
    OpenUrl
  47. ↵
    1. Sweeney, B.W.,
    2. S.J. Czapka and
    3. T. Yerkes
    . 2002. Riparian forest restoration: increasing success by reducing plant competition and herbivory. Restoration Ecology 10:392–400.
    OpenUrl
  48. ↵
    1. Thomas, A.,
    2. R. O’Hara,
    3. U. Ligges and
    4. S. Sturts
    . 2006. Making BUGS Open. R News 6:12–17.
    OpenUrl
  49. ↵
    1. Thomas, S.C. and
    2. N. Gale
    . 2015. Biochar and forest restoration: A review and meta-analysis of tree growth responses. New Forests 46:931–946.
    OpenUrl
  50. ↵
    1. Tonn, N. and
    2. I. Ibáñez
    . 2017. Plant-mycorrhizal fungi associations along an urbanization gradient: implications for tree seedling survival. Urban Ecosystems 20:823–837.
    OpenUrl
  51. ↵
    1. Vosatka, M. and
    2. J.C. Dodd
    . 2002. Ecological considerations for successful application of arbuscular mycorrhizal fungi inoculum. Pages 235–247 in S. Gianinazzi, H. Schüepp, J.M. Barea and K. Haselwandter K (eds) Mycorrhizal Technology in Agriculture. Basel, Switzerland: Birkhäuser-Verlag.
  52. ↵
    1. Warnock, D.D.,
    2. J. Lehmann,
    3. T.W. Kuyper and
    4. M.C. Rillig
    . 2007. Mycorrhizal responses to biochar in soil—concepts and mechanisms. Plant and Soil 300:9–20.
    OpenUrlCrossRefWeb of Science
PreviousNext
Back to top

In this issue

Ecological Restoration: 39 (3)
Ecological Restoration
Vol. 39, Issue 3
September 2021
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Front Matter (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Ecological Restoration.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Biochar Application and Soil Transfer in Tree Restoration: A Meta-Analysis and Field Experiment
(Your Name) has sent you a message from Ecological Restoration
(Your Name) thought you would like to see the Ecological Restoration web site.
Citation Tools
Biochar Application and Soil Transfer in Tree Restoration: A Meta-Analysis and Field Experiment
Edith Juno, Inés Ibáñez
Ecological Restoration Sep 2021, 39 (3) 158-167; DOI: 10.3368/er.39.3.158

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Biochar Application and Soil Transfer in Tree Restoration: A Meta-Analysis and Field Experiment
Edith Juno, Inés Ibáñez
Ecological Restoration Sep 2021, 39 (3) 158-167; DOI: 10.3368/er.39.3.158
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • Biochar Application and Soil Transfer in Tree Restoration: A Meta-Analysis and Field Experiment
    • Methods
    • Results
    • Discussion
    • Acknowledgements
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • Comparative responses of legume vs. non-legume tropical trees to biochar additions
  • Google Scholar

More in this TOC Section

  • Container Type but not Substrate or Hydrogel affects Establishment of Sandhill Milkweed (Asclepias humistrata)
  • Natural Regeneration Dynamics of Himalayan Forests
  • Effects of Restoration on Small Headwater Stream Quality
Show more Research Article

Similar Articles

Keywords

  • establishment
  • meta-analysis
  • Quercus rubra
  • reforestation
  • soil inoculation
UW Press logo

© 2025 Board of Regents of the University of Wisconsin System

Powered by HighWire