Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
  • Info for
    • Authors
    • Subscribers
    • Institutions
    • Advertisers
  • About Us
    • About Us
    • Editorial Board
    • Index/Abstracts
  • Connect
    • Feedback
    • Help
  • Alerts
  • Free Issue
  • Call for Papers
  • Other Publications
    • UWP
    • Land Economics
    • Landscape Journal
    • Native Plants Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Ecological Restoration
  • Other Publications
    • UWP
    • Land Economics
    • Landscape Journal
    • Native Plants Journal
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Ecological Restoration

Advanced Search

  • Home
  • Content
    • Current
    • Archive
  • Info for
    • Authors
    • Subscribers
    • Institutions
    • Advertisers
  • About Us
    • About Us
    • Editorial Board
    • Index/Abstracts
  • Connect
    • Feedback
    • Help
  • Alerts
  • Free Issue
  • Call for Papers
  • Follow uwp on Twitter
  • Visit uwp on Facebook
Research ArticleResearch Article

Amendments Activate Soil Seed Bank in Greenhouse Study, Indicating Potential for Improved Restoration Outcomes

Augustina Kwesie Osabutey, Katherine R. Zodrow, Pedro Marques and Robert W. Pal
Ecological Restoration, December 2020, 38 (4) 228-236; DOI: https://doi.org/10.3368/er.38.4.228
Augustina Kwesie Osabutey
Environmental Engineering Department, Montana Technological University, Butte, MT.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Katherine R. Zodrow
Environmental Engineering Department, Montana Technological University, Butte, MT.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Pedro Marques
Big Hole Watershed Committee, Divide, MT.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Robert W. Pal
Big Hole Watershed Committee, Divide, MT.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. ↵
    1. Ahrens, C.,
    2. J. Chung,
    3. T. Meyer and
    4. C. Auer
    . 2011. Bentgrass distribution surveys and habitat suitability maps support ecological risk assessment in cultural landscapes. Weed Science 59:145–154.
    OpenUrl
  2. ↵
    1. Anderson, T.M.,
    2. M. Schütz and
    3. A.C. Risch
    . 2012. Seed germination cues and the importance of the soil seed bank across an environmental gradient in the Serengeti. Oikos 121:306–312.
    OpenUrlCrossRefWeb of Science
  3. ↵
    1. Arnon, D.I. and
    2. C.M. Johnson
    . 1942. Influence of hydrogen ion concentration on the growth of higher plants under controlled conditions. Plant Physiology 17:525–539.
    OpenUrlFREE Full Text
  4. ↵
    1. Augusto, L.,
    2. J.-L. Dupouey,
    3. J.-F. Picard and
    4. J. Ranger
    . 2001. Potential contribution of the seed bank in coniferous plantations to the restoration of native deciduous forest vegetation. Acta Oecologica 22:87–98.
    OpenUrl
  5. ↵
    1. Bradshaw, A.D.
    1983. The reconstruction of ecosystems: Presidential address to the British Ecological Society, December 1982. Journal of Applied Ecology 20:1–17.
    OpenUrlCrossRefWeb of Science
  6. ↵
    1. Bradshaw, A.D.
    1984. Ecological principles and land reclamation practice. Landscape Planning 11:35–48.
    OpenUrlCrossRefWeb of Science
  7. ↵
    1. Butler, J. and
    2. C. Frieswyk
    . 2001. Propagation protocol for production of propagules (seeds, cuttings, poles, etc.) Carex seeds USDI NPS—Rocky Mountain National Park Estes Park, Colorado. In: Native Plant Network. U.S. Department of Agriculture, Forest Service, National Center for Reforestation, Nurseries, and Genetic Resources. NativePlantNetwork.org.
  8. ↵
    1. Carvalho, A.,
    2. C. Nabais,
    3. S.R. Roiloa and
    4. S. Rodriguez-Echeverria
    . 2013. Revegetation of abandoned copper mines: The role of seed banks and soil amendments. Web Ecology 13:69–77.
    OpenUrl
  9. ↵
    1. Cleland, E.E.,
    2. S.L. Collins,
    3. T.L. Dickson,
    4. E.C. Farrer,
    5. K.L. Gross,
    6. L.A. Gherardi, et al.
    2013. Sensitivity of grassland plant community composition to spatial vs. temporal variation in precipitation. Ecology 94:1687–1696.
    OpenUrlCrossRefPubMedWeb of Science
    1. Clements, H. and
    2. P. Bierzychudek
    . 2017. Can the persistent seed bank contribute to the passive restoration of urban forest fragments after invasive species removal? Ecological Restoration 35: 156–166.
    OpenUrlAbstract/FREE Full Text
    1. Csontos, P.
    2007. Seed banks: ecological definitions and sampling considerations. Community Ecology 8:75–85.
    OpenUrlCrossRefWeb of Science
    1. Dobson, A.P.
    1997. Hopes for the future: restoration ecology and conservation biology. Science 277:515–522.
    OpenUrlAbstract/FREE Full Text
    1. EPA
    . 1996. EPA Superfund Record of Decision: Anaconda Company Smelter, Anaconda, MT. United States Environmental Protection Agency. nepis.epa.gov/Exe/tiff2png.cgi/10004Z4P.PNG?-r+75+-g+7+D%3A%5CZYFILES%5CINDEX%20DATA%5C95THRU99%5CTIFF%5C00000409%5C10004Z4P.TIF.
  10. ↵
    1. Espeland, E.K.,
    2. L.B. Perkins and
    3. E.A. Leger
    . 2010. Comparison of seed bank estimation techniques using six weed species in two soil types. Rangeland Ecology and Management 63:243–247.
    OpenUrl
  11. ↵
    1. Ettler, V.
    2016. Soil contamination near non-ferrous metal smelters: A review. Special Issue of Applied Geochemistry on Environmental Impacts of Mining and Smelting 64:56–74.
    OpenUrl
  12. ↵
    1. Giller, K.E.,
    2. E. Witter and
    3. S.P. Mcgrath
    . 1998. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biology and Biochemistry 30:1389–1414.
    OpenUrl
  13. ↵
    1. Godefroid, S.,
    2. S.L. Pajolec,
    3. M. Hechelski and
    4. F.V. Rossum
    . 2018. Can we rely on the soil seed bank for restoring xeric sandy calcareous grasslands? Restoration Ecology 26:S123–S133.
    OpenUrl
  14. ↵
    1. Golos, P.J.,
    2. K.W. Dixon and
    3. T.E. Erickson
    . 2016. Plant recruitment from the soil seed bank depends on topsoil stockpile age, height, and storage history in an arid environment: Topsoil management. Restoration Ecology 24:S53–S61.
    OpenUrl
  15. ↵
    1. Hothorn, T.,
    2. F. Bretz and
    3. P. Westfall
    . 2008. Simultaneous inference in general parametric models. Biometrical Journal 50:346–363.
    OpenUrlCrossRefPubMedWeb of Science
  16. ↵
    1. Jonas, J.L.,
    2. D.A. Buhl and
    3. A.J. Symstad
    . 2015. Impacts of weather on long-term patterns of plant richness and diversity vary with location and management. Ecology 96:2417–2432.
    OpenUrl
  17. ↵
    1. Kalamees, R.,
    2. K. Püssa,
    3. K. Zobel and
    4. M. Zobel
    . 2012. Restoration potential of the persistent soil seed bank in successional calcareous (alvar) grasslands in Estonia. Applied Vegetation Science 15:208–218.
    OpenUrl
  18. ↵
    1. Kierczak, J.,
    2. A. Potysz,
    3. A. Pietranik,
    4. R. Tyszka,
    5. M. Modelska,
    6. C. Néel,
    7. V. Ettler and
    8. M. Mihaljevič
    . 2013. Environmental impact of the historical Cu smelting in the Rudawy Janowickie Mountains (south-western Poland). Journal of Geochemical Exploration 124:183–194.
    OpenUrlGeoRef
  19. ↵
    1. Kiss, R.,
    2. B. Deák,
    3. P. Török,
    4. B. Tóthmérész and
    5. O. Valkó
    . 2018. Grassland seed bank and community resilience in a changing climate. Restoration Ecology 26:S141–S150.
    OpenUrl
  20. ↵
    1. Klaus, V.H.,
    2. C.J. Hoever,
    3. M. Fischer,
    4. U. Hamer,
    5. T. Kleinebecker,
    6. D. Mertens, et al.
    2018. Contribution of the soil seed bank to the restoration of temperate grasslands by mechanical sward disturbance. Restoration Ecology 26:S114–S122.
    OpenUrl
  21. ↵
    1. Lin, Y.-F. and
    2. M.G.M. Aarts
    . 2012. The molecular mechanism of zinc and cadmium stress response in plants. Cellular and Molecular Life Sciences 69:3187–3206.
    OpenUrlCrossRefPubMed
  22. ↵
    1. Luna, T.,
    2. S. Corey,
    3. J. Evans,
    4. D. Wick and
    5. J. Hosokawa
    . 2008a. Propagation protocol for production of container (plug) Spiraea betulifolia Pallas plants 160 ml conetainers; USDI NPS—Glacier National Park West Glacier, Montana. In: Native Plant Network. US Department of Agriculture, Forest Service, National Center for Reforestation, Nurseries, and Genetic Resources. NativePlantNetwork.org.
  23. ↵
    1. Luna, T.,
    2. J. Evans and
    3. D. Wick
    . 2008b. Propagation protocol for production of container (plug) Phacelia hastata Dougl. plants 172 ml conetainers; USDI NPS—Glacier National Park West Glacier, Montana. In: Native Plant Network. U.S. Department of Agriculture, Forest Service, National Center for Reforestation, Nurseries, and Genetic Resources. NativePlantNetwork.org.
  24. ↵
    1. Luna, T.,
    2. J. Evans and
    3. D. Wick
    . 2008c. Propagation protocol for production of Container (plug) Pinus flexilis James plants 172 ml Conetainers; USDI NPS—Glacier National Park West Glacier, Montana. In: Native Plant Network. US Department of Agriculture, Forest Service, National Center for Reforestation, Nurseries, and Genetic Resources. NativePlantNetwork.org.
  25. ↵
    1. Luna, T.,
    2. J. Evans,
    3. D. Wick and
    4. J. Hosokawa
    . 2008d. Propagation protocol for production of container (plug) Pinus contorta Dougl.ex Loud. plants 172 ml conetainers; USDI NPS—Glacier National Park West Glacier, Montana. Native Plant Network. US Department of Agriculture, Forest Service, National Center for Reforestation, Nurseries, and Genetic Resources. NativePlantNetwork.org.
  26. ↵
    1. Ma, Y.,
    2. M. Rajkumar,
    3. Y. Luo and
    4. H. Freitas
    . 2013. Phytoextraction of heavy metal polluted soils using Sedum plumbizincicola inoculated with metal mobilizing Phyllobacterium myrsinacearum RC6b. Chemosphere 93:1386–1392.
    OpenUrlCrossRef
  27. ↵
    1. Maighal, M.,
    2. M. Salem,
    3. J. Kohler and
    4. M.C. Rillig
    . 2016. Arbuscular mycorrhizal fungi negatively affect soil seed bank viability. Ecology and Evolution 6:7683–7689.
    OpenUrl
  28. ↵
    1. Maron, J.L. and
    2. M. Marler
    . 2008. Field-based competitive impacts between invaders and natives at varying resource supply. Journal of Ecology 96:1187–1197.
    OpenUrlCrossRefWeb of Science
  29. ↵
    1. Matus, G.,
    2. B. Tóthmérész and
    3. M. Papp
    . 2003. Restoration prospects of abandoned species-rich sandy grassland in Hungary. Applied Vegetation Science 6:169–178.
    OpenUrl
    1. McLaughlin, A. and
    2. P. Mineau
    . 1995. The impact of agricultural practices on biodiversity. Agriculture, Ecosystems and Environment 55:201–212.
    OpenUrl
  30. ↵
    1. Merritt, D.J.,
    2. P.J. Golos and
    3. T.E. Erickson
    . 2016. A systematic approach to seed management for restoration. Pages 35–42 in Erickson T.E., Barrett R.L., Merritt D.J., Dixon K.W. (eds) Pilbara seed atlas and field guide: plant restoration in Australia’s arid northwest. CSIRO Publishing, Melbourne, Australia.
  31. ↵
    1. Miao, R.,
    2. Y. Song,
    3. Z. Sun,
    4. M. Guo,
    5. Z. Zhou and
    6. Y. Liu
    . 2016. Soil seed bank and plant community development in passive restoration of degraded sandy grasslands. Sustainability doi:10.3390/su8060581.
    OpenUrlCrossRef
    1. Moles, A.T. and
    2. M. Westoby
    . 2004. What do seedlings die from and what are the implications for evolution of seed size? Oikos 106:193–199.
    OpenUrlCrossRefWeb of Science
  32. ↵
    1. Moore, J.N. and
    2. S.N. Luoma
    . 1990. Hazardous wastes from large-scale metal extraction. A case study. Environmental Science and Technology 24:1278–1285.
    OpenUrlCrossRefGeoRef
    1. MT DOJ NRDP
    . 2007. Draft Conceptual Smelter Hill Area Uplands Resources Restoration Plan. Helena, MT: Montana Department of Justice, Natural Resource Damage Program.
    1. Mueggler, W.F.
    1980. Grassland and Shrubland Habitat Types of Western Montana. Ogden, Utah: Dept. of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station.
  33. ↵
    1. Munro, N.T.,
    2. J. Fischer,
    3. J. Wood and
    4. D.B. Lindenmayer
    . 2009. Revegetation in agricultural areas: the development of structural complexity and floristic diversity. Ecological Applications 19: 1197–1210.
    OpenUrlCrossRefPubMedWeb of Science
  34. ↵
    1. Nagajyoti, P.C.,
    2. K.D. Lee and
    3. T.V.M. Sreekanth
    . 2010. Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemistry Letters 8:199–216.
    OpenUrl
    1. R Development Core Team
    . 2020. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
  35. ↵
    1. Rapai, S.B.,
    2. S. Hunt,
    3. L.D. Bainard,
    4. M.-H. Turgeon and
    5. S.G. Newmaster
    . 2016. Soil inoculation with arbuscular mycorrhizal fungi promotes the growth of boreal plant communities in gold mine overburden. Ecological Restoration 34:216–224.
    OpenUrlAbstract/FREE Full Text
  36. ↵
    1. Rizzi, L.,
    2. G. Petruzzelli,
    3. G. Poggio and
    4. G.V. Guidi
    . 2004. Soil physical changes and plant availability of Zn and Pb in a treatability test of phytostabilization. Chemosphere 57:1039–1046.
    OpenUrl
  37. ↵
    1. Tacey, W.H. and
    2. B.L. Glossop
    . 1980. Assessment of topsoil handling techniques for rehabilitation of sites mined for bauxite within the Jarrah Forest of Western Australia. Journal of Applied Ecology 17:195–201.
    OpenUrlCrossRefGeoRefWeb of Science
    1. Taiz, L. and
    2. E. Zeiger
    . 2002. Plant Physiology. 3rd ed. Sunderland, Mass: Sinauer Associates.
  38. ↵
    1. Tilman, D.,
    2. P.B. Reich,
    3. J. Knops,
    4. D. Wedin,
    5. T. Mielke and
    6. C. Lehman
    . 2001. Diversity and productivity in a long-term grassland experiment. Science 294:843–845.
    OpenUrlAbstract/FREE Full Text
  39. ↵
    1. Tordoff, G.M.,
    2. A.J.M. Baker and
    3. A.J. Willis
    . 2000. Current approaches to the revegetation and reclamation of metalliferous mine wastes. Chemosphere 41:219–228.
    OpenUrlCrossRefPubMedWeb of Science
    1. Török, P.,
    2. A. Kelemen,
    3. O. Valkó,
    4. T. Miglécz,
    5. K. Tóth,
    6. E. Tóth, et al.
    2018. Succession in soil seed banks and its implications for restoration of calcareous sand grasslands. Restoration Ecology 26:S134–S140.
    OpenUrl
    1. Török, P.,
    2. G. Matus,
    3. M. Papp and
    4. B. Tóthmérész
    . 2009. Seed bank and vegetation development of sandy grasslands after goose breeding. Folia Geobotanica 44:31–46.
    OpenUrl
  40. ↵
    1. USDA, NRCS
    . 2020. The PLANTS Database. National Plant Data Center, Greensboro, NC. http://plants.usda.gov.
  41. ↵
    1. USEPA
    . 2016. Anaconda Smelter, Anaconda, Montana, Superfund Case Study—Revitalization of the Upland Areas. Helena, MT: United States Environmental Protection Agency.
  42. ↵
    1. Venson, G.R.,
    2. R.C. Marenzi,
    3. T.C.M. Almeida,
    4. A. Deschamps-Schmidt,
    5. R.C. Testolin,
    6. L.R. Rörig and
    7. C.M. Radetski
    . 2017. Restoration of areas degraded by alluvial sand mining: use of soil microbiological activity and plant biomass growth to assess evolution of restored riparian vegetation. Environmental Monitoring and Assessment 189:120.
    OpenUrl
  43. ↵
    1. Wang, Z.,
    2. H. Xu,
    3. L. Yin,
    4. J. Li,
    5. Z. Zhang and
    6. Y. Li
    . 2009. Effects of water treatments on the activation of soil seed banks—A case study on the lower reaches of the Tarim River. Progress in Natural Science 19:733–740.
    OpenUrl
    1. Wong, M.H.
    2003. Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 50:775–780.
    OpenUrlCrossRefPubMedWeb of Science
    1. WRCC
    . 2019. Cooperative climatological data summaries. Western Regional Climate Center. https://wrcc.dri.edu/.
  44. ↵
    1. Zhang, Z.Q.,
    2. W.S. Shu,
    3. C.Y. Lan and
    4. M.H. Wong
    . 2001. Soil seed bank as an input of seed source in revegetation of lead / zinc mine tailings. Restoration Ecology 9:378–385.
    OpenUrl
PreviousNext
Back to top

In this issue

Ecological Restoration: 38 (4)
Ecological Restoration
Vol. 38, Issue 4
1 Dec 2020
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Front Matter (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Ecological Restoration.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Amendments Activate Soil Seed Bank in Greenhouse Study, Indicating Potential for Improved Restoration Outcomes
(Your Name) has sent you a message from Ecological Restoration
(Your Name) thought you would like to see the Ecological Restoration web site.
Citation Tools
Amendments Activate Soil Seed Bank in Greenhouse Study, Indicating Potential for Improved Restoration Outcomes
Augustina Kwesie Osabutey, Katherine R. Zodrow, Pedro Marques, Robert W. Pal
Ecological Restoration Dec 2020, 38 (4) 228-236; DOI: 10.3368/er.38.4.228

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Amendments Activate Soil Seed Bank in Greenhouse Study, Indicating Potential for Improved Restoration Outcomes
Augustina Kwesie Osabutey, Katherine R. Zodrow, Pedro Marques, Robert W. Pal
Ecological Restoration Dec 2020, 38 (4) 228-236; DOI: 10.3368/er.38.4.228
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • Methods
    • Results
    • Discussion
    • Acknowledgements
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Container Type but not Substrate or Hydrogel affects Establishment of Sandhill Milkweed (Asclepias humistrata)
  • Natural Regeneration Dynamics of Himalayan Forests
  • Effects of Restoration on Small Headwater Stream Quality
Show more Research Article

Similar Articles

Keywords

  • aeolian contamination
  • Montana
  • mycorrhizae
  • nutrient amendments
  • seed addition
UW Press logo

© 2025 Board of Regents of the University of Wisconsin System

Powered by HighWire