Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
  • Info for
    • Authors
    • Subscribers
    • Institutions
    • Advertisers
  • About Us
    • About Us
    • Editorial Board
    • Index/Abstracts
  • Connect
    • Feedback
    • Help
  • Alerts
  • Free Issue
  • Call for Papers
  • Other Publications
    • UWP
    • Land Economics
    • Landscape Journal
    • Native Plants Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Ecological Restoration
  • Other Publications
    • UWP
    • Land Economics
    • Landscape Journal
    • Native Plants Journal
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Ecological Restoration

Advanced Search

  • Home
  • Content
    • Current
    • Archive
  • Info for
    • Authors
    • Subscribers
    • Institutions
    • Advertisers
  • About Us
    • About Us
    • Editorial Board
    • Index/Abstracts
  • Connect
    • Feedback
    • Help
  • Alerts
  • Free Issue
  • Call for Papers
  • Follow uwp on Twitter
  • Visit uwp on Facebook
Research ArticleResearch Articles

Restoration of Ecosystem Function by Soil Surface Inoculation with Biocrust in Mesic and Xeric Alpine Ecosystems

Annie-Claude Letendre, Darwyn S. Coxson and Katherine J. Stewart
Ecological Restoration, June 2019, 37 (2) 101-112; DOI: https://doi.org/10.3368/er.37.2.101
Annie-Claude Letendre
Ecosystem Science and Management Program, University of Northern British Columbia, 3333 University Way, Prince George, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Darwyn S. Coxson
Ecosystem Science and Management, University of Northern British Columbia, 3333 University Way, Prince George, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Katherine J. Stewart
(corresponding author), Department of Soil Science, University of Saskatchewan. Current address: Department of Soil Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, Canada, S7N 5A8. .
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. ↵
    1. Aanderud Z.T.,
    2. Smart T.B.,
    3. Wu N.,
    4. Taylor A.S.,
    5. Zhang Y.,
    6. Belnap J
    . 2018. Fungal loop transfer of nitrogen depends on biocrust constituents and nitrogen form. Biogeosciences 15:3831–3840.
    OpenUrl
  2. ↵
    1. Antoninka A.,
    2. Bowker M.A.,
    3. Reed S.C.,
    4. Doherty K
    . 2015. Production of greenhouse-grown biocrust mosses and associated cyanobacteria to rehabilitate dryland soil function. Restoration Ecology 24:324–335.
    OpenUrl
  3. ↵
    1. Antoninka A.M.,
    2. Bowker M.A.,
    3. Chuckran P.,
    4. Barger N.N.,
    5. Reed S.,
    6. Belnap J
    . 2018. Maximizing establishment and survivorship fo field-collected and greenhouse-cultivated biocrusts in a semi-cold desert. Plant and Soil 429:213–225.
    OpenUrlCrossRef
  4. ↵
    1. Ayuso S.V.,
    2. Silva A.G.,
    3. Nelson C,
    4. Barger N.N.,
    5. Garcia-Pichel F
    . 2017. Microbial nursery production of high-quality biological soil crust biomass for restoration of degraded dryland soils. Applied and Environmental Microbiology. 83:e02179–16.
    OpenUrl
  5. ↵
    1. Barger N.N.,
    2. Weber B.,
    3. Garcia-Pichel F,
    4. Zaady E,
    5. Belnap J
    . 2016. Patterns and controls on nitrogen cycling of biological soil crusts. Pages 257–286 in Weber B., Büdel B., Belnap J. (eds), Biological Soil Crusts: An Organizing Principle in Drylands. Switzerland: Springer Nature.
  6. ↵
    1. Bates D.,
    2. Mächler M.,
    3. Bolker B.,
    4. Walker S
    . 2014. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67:1–48.
    OpenUrlCrossRef
  7. ↵
    1. Bayramov E.,
    2. Buchroithner M.,
    3. McGurty E
    . 2012. Quantitative assessment of vegetation cover and soil degradation factors within terrain units for planning, monitoring and assessment of renaturation along oil and gas pipelines. Geocarto International 27:535–555.
    OpenUrl
  8. ↵
    1. Belnap J
    . 1993. Recovery rates of cryptobiotic crusts: Inoculant use and assessment methods. The Great Basin Naturalist 53:89–95.
    OpenUrl
  9. ↵
    1. Belnap J
    . 1995. Recovery of nitrogenase activity in cyanobacterial-lichen soils crusts of the Great Basin and the Colorado Plateau. Bulletin of the Ecological Society of America 76: 18–19.
    OpenUrl
  10. ↵
    1. Belnap J.,
    2. Eldridge D
    . 2001. Disturbance and recovery of biological soil crusts. Pages 363–383 in Belnap J., Lange O.L. (eds.) Biological Soil Crusts: Structure, Function, and Management. Berlin, Germany: Springer.
  11. ↵
    1. Belnap J
    . 2002. Impacts of off road vehicles on nitrogen cycles in biological soil crusts: resistance in different US deserts. Journal of Arid Environments 52:155–165.
    OpenUrlCrossRef
  12. ↵
    1. Billings W.D.,
    2. Mooney H.A
    . 1968. The ecology of arctic and alpine plants. Biological Reviews 43:481–529.
    OpenUrlCrossRefWeb of Science
  13. ↵
    1. Bowker M.A
    . 2007. Biological soil crust rehabilitation in theory and practice: An underexploited opportunity. Restoration Ecology 15:13–23.
    OpenUrl
  14. ↵
    1. Bowker M.A.,
    2. Belnap J.,
    3. Chaudhary V.B.,
    4. Johnson N.C
    . 2008. Revisiting classic water erosion models in drylands: The strong impact of biological soil crusts. Soil Biology & Biochemistry 40:2309–2316.
    OpenUrl
  15. ↵
    1. Bowker M.A.,
    2. Mau R.L.,
    3. Maestre F.T.,
    4. Escolar C.,
    5. Castillo-Monroy A.P
    . 2011. Functional profiles reveal unique ecological roles of various biological soil crust organisms. Functional Ecology 25:787–795.
    OpenUrlWeb of Science
  16. ↵
    1. Bowker M.A.,
    2. Maestre F.T.,
    3. Eldridge D.,
    4. Belnap J.,
    5. Castillo-Monroy A.,
    6. Escolar C.,
    7. Soliveres S
    . 2014. Biological soil crusts (biocrusts) as a model system in community, landscape and ecosystem ecology. Biodiversity and Conservation 23:1619–1637.
    OpenUrl
  17. ↵
    1. Bu C,
    2. Wu S.,
    3. Xie Y.,
    4. Zhang X
    . 2013. The study of biological soil crusts: hotspots and prospects. Clean 41:899–906.
    OpenUrl
  18. ↵
    1. Bu C.,
    2. Wu S.,
    3. Zhang K.,
    4. Yang Y.,
    5. Gao G
    . 2015. Biological soil crusts: An eco-adaptive biological conservative mechanism and implications for ecological restoration. Plant Biosystems 149:364–373.
    OpenUrl
  19. ↵
    1. Büdel B.,
    2. Colesie C.,
    3. Green T.G.A.,
    4. Grube M.,
    5. Suau R.L.,
    6. Loewen-Schneider K.,
    7. et al
    . 2014. Improved appreciation of the functioning and importance of biological soil crusts in Europe: the Soil Crust International Project (SCIN). Biodiversity and Conservation 23:1639–1658.
    OpenUrl
  20. ↵
    1. Bulot A.,
    2. Provost E.,
    3. Dutoit T
    . 2014. A comparison of different soil transfer strategies for restoring a Mediterranean steppe after a pipeline leak (La Crau plain, South-Eastern France). Ecological Engineering 71:690–702.
    OpenUrl
  21. ↵
    1. Buttars S.M.,
    2. St. Clair L.L.,
    3. Johansen J.R.,
    4. Sray J.C.,
    5. Payne M.C.,
    6. Webb B.L,
    7. et al
    . 1998. Pelletized cyanobacterial soil amendments: Laboratory testing for survival, escapability, and nitrogen fixation. Arid Soil Research and Rehabilitation 12:165–178.
    OpenUrl
  22. ↵
    1. Capers R.S.,
    2. Taylor D.W
    . 2014. Slow recovery in a Mount Washington, New Hampshire, alpine plant community four years after disturbance. Rhodora 116:1–24.
    OpenUrl
  23. ↵
    1. Čapková K.,
    2. Hauer T.,
    3. Řeháková K.,
    4. Doležal J
    . 2016. Some like it high! Phylogenetic diversity of high-elevation cyanobacterial community from biological soil crusts of Western Himalaya. Microbial Ecology 71:113–123.
    OpenUrl
  24. ↵
    1. Chambers J.C.,
    2. MacMahon J.A.,
    3. Brown R.W
    . 1990. Alpine seedling establishment: the influence of disturbance type. Ecology 71:1323–1341.
    OpenUrlCrossRefWeb of Science
  25. ↵
    1. Chandler D.G,
    2. Day N.,
    3. Madsen M.D.,
    4. Belnap J
    . 2018. Amendements fail to hasten biocrust recovery or soil stability at a disturbed dryland sandy site. Restoration Ecology: doi.org/10.1111/rec.12870.
    OpenUrlCrossRef
  26. ↵
    1. Chapin D.M.,
    2. Bliss L.,
    3. Bledsoe L
    . 1991. Environmental regulation of nitrogen fixation in a high arctic lowland ecosystem. Canadian Journal of Botany 69:2744–2755.
    OpenUrl
  27. ↵
    1. Chiquoine L.P.,
    2. Abella S. R.,
    3. Bowker M.A
    . 2016. Rapdily restoring biological soil crusts and ecosystem function in a severly disturbed desert ecosystem. Ecological Applications 26:1260–1272.
    OpenUrl
  28. ↵
    1. Coleine C.,
    2. Selbmann L.,
    3. Ventura S.,
    4. D’Acqui L. P.,
    5. Onofri S.,
    6. Zucconi L
    . 2015. Fungal Biodiversity in the Alpine Tarfala Valley. Microorganisms 3:612–624.
    OpenUrl
  29. ↵
    1. Colesie C.,
    2. Green T.G.A.,
    3. Raggio J.,
    4. Budel B
    . 2016. Summer activity patterns of Antarctic and high alpine lichen-dominated biological soil crusts—similar but different? Arctic Antarctic and Alpine Research 48:449–460.
    OpenUrl
  30. ↵
    1. Coxson D.S
    . 1991. Impedance measurement of thallus mositure-content in lichens. Lichenologist 23:77–84.
    OpenUrl
  31. ↵
    1. Crayton M
    . 1982. A comparative cytochemical study of volvocacean matrix polysaccharides. Journal of Phycology 18:336–344.
    OpenUrlCrossRefWeb of Science
  32. ↵
    1. Delgado-Baquerizo M.,
    2. Morillas L.,
    3. Maestre F.T.,
    4. Gallardo A
    . 2013. Biocrusts control the nitoregn dynamics and microbial functional diversity of semi-arid soils in response to nutirent additions. Plant and Soil 366:35–47.
    OpenUrlCrossRefWeb of Science
  33. ↵
    1. Delgado-Baquerizo M.,
    2. Maestre F.T.,
    3. Eldridge D.J.,
    4. Bowker M.A.,
    5. Ochoa V.,
    6. Gozalo B.,
    7. et al
    . 2016. Biocrust-forming mosses mitigate the negative impacts of increasing aridity on ecosystem multifunctionality in drylands. The New Phytologist 209:1540–1552.
    OpenUrl
  34. ↵
    1. de Guevara M.L.,
    2. Lazaro R.,
    3. Quero J.L.,
    4. Ochoa V.,
    5. Gozalo B.,
    6. Berdugo M.,
    7. et al
    . 2014. Simulated climate change reduced the capacity of lichen-dominated biocrusts to act as carbon sinks in two semi-arid Mediterranean ecosystems. Biodiversity and Conservation 23:1787–1807.
    OpenUrl
  35. ↵
    1. Desserud P.A.,
    2. Naeth M.A
    . 2013. Natural recovery of rough fescue (Festuca hallii (Vasey) Piper) grassland after disturbance by pipeline construction in central Alberta, Canada. Natural Areas Journal 33:91–98.
    OpenUrl
  36. ↵
    1. Doherty K.D.,
    2. Antoninka A.J.,
    3. Bowker M.A.,
    4. Ayuso S.V
    . 2015. A novel approach to cultivate biocrusts for restoration and experimentation. Ecological Restoration 33:13–16.
    OpenUrlFREE Full Text
  37. ↵
    1. Environment Canada
    . 2017. 1981–2010 climate normals and averages (accessed April 4, 2017). climate.weather.gc.ca/climate_normals/index_e.html.
  38. ↵
    1. Evans R.,
    2. Lange O
    . 2001. Biological soil crusts and ecosystem nitrogen and carbon dynamics. Pages 263–279 in Belnap J., Lange O.L. (eds.) Biological Soil Crusts: Structure, Function, And Management. Berlin, Germany: Springer.
  39. ↵
    1. Evans R.D.,
    2. Belnap J
    . 1995. Nitrogen dynamics of disturbed and undisturbed arid grasslands in Canyonlands National Park. Bulletin of the Ecological Society of America 76:324–324.
    OpenUrl
  40. ↵
    1. Ferrenberg S.,
    2. Tucker C.L.,
    3. Reed S.C
    . 2017. Biological soil crusts: diminutive communites of potential global importance. Frontiers of Ecology and Environment 15:160–167.
    OpenUrl
  41. ↵
    1. Gavazov K.S.,
    2. Soudzilovskaia N.A.,
    3. van Logtestijn R.S.P.,
    4. Braster M.,
    5. Cornelissen J.H.C
    . 2010. Isotopic analysis of cyanobacterial nitrogen fixation associated with subarctic lichen and bryophyte species. Plant and Soil 333:507–517.
    OpenUrlCrossRefWeb of Science
  42. ↵
    1. Gundale M.J.,
    2. Bach L.H.,
    3. Nordin A
    . 2013. The impact of simulated chronic nitrogen deposition on the biomass and N2-fixation activity of two boreal feather moss-cyanobacterial associations. Biology Letters 9:20130797.
    OpenUrl
  43. ↵
    1. Gretarsdottir J. A.L.,
    2. Aradottir,
    3. Vandvik V.,
    4. Heegaard E.,
    5. Birks H.J.B
    . 2004. Long-term effects of reclamation treatments on plant succession in Iceland. Restoration Ecology 12:268–278.
    OpenUrl
  44. ↵
    1. Grote E.E.,
    2. Belnap J.,
    3. Housman D.C.,
    4. Sparks J.P
    . 2010. Carbon exchange in biological soil crust communities under differential temperatures and soil water contents: Implications for global change. Global Change Biology 16:2763–2774.
    OpenUrl
  45. ↵
    1. Hawkes C.V
    . 2004. Effects of biological soil crusts on seed germination of four endangered herbs in a xeric Florida shrubland during drought. Plant Ecology 170:121–134.
    OpenUrlCrossRefWeb of Science
  46. ↵
    1. Hobara S.,
    2. McCalley C.,
    3. Koba K.,
    4. Giblin A.E.,
    5. Weiss M.S.,
    6. Gettel G.M.,
    7. Shaver G.R
    . 2006. Nitrogen fixation in surface soils and vegetation in an Arctic tundra watershed: A key source of atmospheric nitrogen. Arctic, Antarctic and Alpine Research 38:363–372.
    OpenUrl
  47. ↵
    1. Hothorn T.,
    2. Bretz F.,
    3. Westfall P
    . 2008. Simultaneous inference in general parametric models. Biometrical Journal 50:346–363.
    OpenUrlCrossRefPubMedWeb of Science
  48. ↵
    1. Janatkova K.,
    2. Rehakova K.,
    3. Dolezal J.,
    4. Simek M.,
    5. Chlumska Z.,
    6. Dvorsky M.,
    7. Kopecky M
    . 2013. Community structure of soil phototrophs along environmental gradients in arid Himalaya. Environmental Microbiology 15:2505–2516.
    OpenUrl
  49. ↵
    1. Janczarek M
    . 2011. Environmental signals and regulatory pathways that influence exopolysaccharide production in rhizobia. International Journal of Molecular Sciences 12:7898–7933.
    OpenUrl
  50. ↵
    1. Johansson O.,
    2. Olofsson J.,
    3. Giesler R.,
    4. Palmqvist K
    . 2011. Lichen responses to nitrogen and phosphorus additions can be explained by the different symbiont responses. New Phytologist 191:795–805.
    OpenUrlPubMed
  51. ↵
    1. Jeffries D.,
    2. Klopatek J.,
    3. Link S.,
    4. Bolton H
    . 1992. Acetylene reduction by cryptogamic crusts from a blackbrush community as related to resaturation and dehydration. Soil Biology and Biochemistry 24:1101–1105.
    OpenUrl
  52. ↵
    1. Kuske C.R.,
    2. Yeager C. M.,
    3. Johnson S.,
    4. Ticknor L.O.,
    5. Belnap J
    . 2012. Response and resilience of soil biocrust bacterial communities to chronic physical disturbance in arid shrublands. ISME Journal 6:886–897.
    OpenUrl
  53. ↵
    1. Kuznetsova A.,
    2. Brockhoff P.B.,
    3. Christensen R.H.B
    . 2013. lmer-Test: Tests for random and fixed effects for linear mixed effect models (lmer objects of lme4 package). R package version 2.
  54. ↵
    1. Kytövitta M.-M.,
    2. Crittenden P.D
    . 2007. Growth and nitrogen relations in the mat-forming lichens Sterocaulon pascahe and Caldonia stellaris. Annals of Botany 100:1537–1545.
    OpenUrlCrossRefPubMed
  55. ↵
    1. Li D.,
    2. Xing W.,
    3. Li G.,
    4. Liu Y
    . 2009. Cytochemical changes in the developmental process of Nostoc sphaeroides (cyanobacterium). Journal of Applied Phycology 21:119–125.
    OpenUrl
  56. ↵
    1. Li X.R.,
    2. He M.Z.,
    3. Zerbe S.,
    4. Li X.J.,
    5. Liu L.C
    . 2010. Micro-geomorphology determines community structure of biological soil crusts at small scales. Earth Surface Processes and Landforms 35:932–940.
    OpenUrlGeoRef
  57. ↵
    1. Liengen T
    . 1999. Environmental factors influencing the nitrogen fixation activity of free-living terrestrial cyanobacteria from a high arctic area, Spitsberg. Canadian Journal of Microbiology 45:573–581.
    OpenUrl
  58. ↵
    1. Liu W.-Q.,
    2. Song Y.-S.,
    3. Wang B.,
    4. Li J.-T.,
    5. Shu W.-S
    . 2012. Nitrogen fixation in biotic crusts and vascular plant communities on a copper mine tailings. European Journal of Soil Biology 50:15–20.
    OpenUrlCrossRefWeb of Science
  59. ↵
    1. Ma Z.,
    2. Ma M.,
    3. Baskin J.M.,
    4. Baskin C.C.,
    5. Li J.,
    6. Du G
    . 2014. Responses of alpine meadow seed bank and vegetation to nine consecutive years of soil fertilization. Ecological Engineering 70:92–101.
    OpenUrl
  60. ↵
    1. Maestre F.T.,
    2. Bowker M.A.,
    3. Canton Y.,
    4. Castillo-Monroy A.P.,
    5. Cortina J.,
    6. Escolar C,
    7. et al
    . 2011. Ecology and functional roles of biological soil crusts in semi-arid ecosystems of Spain. Journal of Arid Environments 75:1282–1291.
    OpenUrl
  61. ↵
    1. Maestre F.T.,
    2. Martin N.,
    3. Diez B.,
    4. Lopez-Poma R.,
    5. Santos F.,
    6. Lugue I.,
    7. et al.
    2006. Watering, fertilization, and slurry inoculation promote recovery of biological crust function in degraded soils. Microbial Biology 52:365–377.
    OpenUrl
  62. ↵
    1. Mager D.M.,
    2. Thomas A.D
    . 2011. Extracellular ploysaccharides form cyanobacterial soil crusts: A review of their role in dryland processes. Journal of Arid Environments 75:91–97.
    OpenUrl
  63. ↵
    1. Masuko T.,
    2. Minami A.,
    3. Iwasaki N.,
    4. Majima T.,
    5. Nishimura S. I.,
    6. Lee Y. C
    . 2005. Carbohydrate analysis by a phenol-sulfuric acid method in microplate format. Analytical Biochemistry 339:69–72.
    OpenUrlCrossRefPubMedWeb of Science
  64. ↵
    1. Matheus P,
    2. Omtzigt T
    . 2013. Yukon Revegetaiton Manual: Practical approaches and methods. Whitehorse, Yukon. ISBN 9780-9919499-0-8. URL: yukonrevegetatiomanual.ca
  65. ↵
    1. Mendrygal K.E.,
    2. González J.E
    . 2000. Environmental regulation of exopolysaccharide production in Sinorhizobium meliloti. Journal of Bacteriology 182:599–606.
    OpenUrlAbstract/FREE Full Text
  66. ↵
    1. Onipchenko V.G.,
    2. Makarov M.I.,
    3. Akhmetzhanova A.A.,
    4. Soudzilovskaia N.A.,
    5. Aibazova F.U.,
    6. Elkanova M.K.,
    7. Stogova A.V.
    2012. Alpine plant functional group responses to fertiliser addition depend on abiotic regime and community composition. Plant and Soil 357:103–115.
    OpenUrlCrossRef
  67. ↵
    1. Patova E.,
    2. Sivkov M.,
    3. Patova A
    . 2016. Nitrogen fixation activity in biological soil crusts dominated by cyanobacteria in the Subpolar Urals (European North-East Russia). FEMS Microbiology Ecology 92:1–9.
    OpenUrlCrossRef
  68. ↵
    1. Peer T.,
    2. Turk R.,
    3. Gruber J.P.,
    4. Tschaikner A
    . 2010. Species composition and pedological characteristics of biological soil crusts in a high alpine ecosystem, Hohe Tauern, Austria. Journal on Protected Mountain Areas Research 2:23–30.
    OpenUrl
  69. ↵
    1. Pérez C.A.,
    2. Silva W.A.,
    3. Aravena J.C.,
    4. Armesto J.J
    . 2017. Limitations and relevance of biological nitrogen fixation during post-glacial succession in Cordillera Darwin, Tierra del Fuego, Chile. Arctic, Antarctic and Alpine Research 1:29–42.
    OpenUrl
  70. ↵
    1. Pojar J.,
    2. Stewart A
    . 1991. Alpine tundra zone. Ecosystems of British Columbia. Pages 263–274 in Meidinger D., Pojar J. (eds.). BC Special Report Series. Research Branch, BC Ministry of Forests, Victoria.
  71. ↵
    1. Scherrer P.,
    2. Pickering C.M
    . 2006. Recovery of alpine herbield on a closed walking track in the Kosciuszko Alpine Zone, Australia. Arctic, Antarctic and Alpine Research 38:239–248.
    OpenUrl
  72. ↵
    1. Scmidt S.K.,
    2. Nemergut D.R.,
    3. Todd B.T.,
    4. Lynch R.C.,
    5. Darcy J.L.,
    6. Cleveland C.C.,
    7. King A.J
    . 2012. A simple method for determing limiting nutirents for photosynthetic crusts. Plant Ecology and Diversity 5:513–519.
    OpenUrl
  73. ↵
    1. Solorzano L
    . 1969. Determination of ammonia in natural waters by the phenol hypochlorite method. Limnology and Oceanography 14:799–801.
    OpenUrlCrossRefWeb of Science
  74. ↵
    1. Sorochkina K.,
    2. Ayusa S.V.,
    3. Garcia-Pichel F
    . 2018. Establishing rates of lateral expansion of cyano-bacterial biological soil crusts for optimal restoration. Plant and Soil 429:199–211.
    OpenUrlCrossRef
  75. ↵
    1. Stark L.,
    2. Brinda J.,
    3. McLetchie D
    . 2011. Effects of increased summer precipitation and N deposition on Mojave Desert populations of the biological crust moss Syntrichia caninervis. Journal of Arid Environments 75:457–463.
    OpenUrlCrossRefWeb of Science
  76. ↵
    1. Steven B.,
    2. Kuske C.R.,
    3. Gallegos-Graves L.V.,
    4. Reed S.C.,
    5. Belnap J
    . 2015. Climate change and physical disturbance manipulations result in distinct biological soil crust communities. Applied and Environmental Microbiology 81:7448–7459.
    OpenUrlAbstract/FREE Full Text
  77. ↵
    1. Stewart K.J.,
    2. Grogan P.,
    3. Coxson D.S.,
    4. Siciliano S.D
    . 2014. Topography as a key factor driving atmospheric nitrogen exchanges in arctic terrestrial ecosystems. Soil Biology & Biochemistry 70:96–112.
    OpenUrl
  78. ↵
    1. Stewart K.J.,
    2. Siciliano S.D
    . 2015. Potential contribution of native herbs and biological soil crusts to restoration of the biogeochemical nitrogen cycle in mining impacted sites in northern Canada. Ecological Restoration 33:30–42.
    OpenUrlAbstract/FREE Full Text
  79. ↵
    1. Stewart W.,
    2. Fitzgerald G.,
    3. Burris N
    . 1967. In situ studies on N2 fixation using the acetylene reduction technique. Proceedings of the National Academy of Sciences 58:2071–2078.
    OpenUrlFREE Full Text
  80. ↵
    1. Strong W.L
    . 2013. Ecoclimatic zonation of Yukon (Canada) and ecoclinal variation in vegetation. Arctic 66:52–67.
    OpenUrlWeb of Science
  81. ↵
    1. Waring S.,
    2. Bremner J
    . 1964. Ammonium production in soil under waterlogged conditions as an index of nitrogen availability. Nature 201:951–952.
    OpenUrlCrossRefWeb of Science
  82. ↵
    1. Weiss M.,
    2. Hobbie S.E.,
    3. Gettel G.M
    . 2005. Contrasting responses of nitrogen-fixation in arctic lichens to experimental and ambient nitrogen and phosphorus availability. Arctic, Antarctic and Alpine Research 37:396–401.
    OpenUrl
  83. ↵
    1. Xu S.,
    2. Yin C.,
    3. He M.,
    4. Wang Y
    . 2008. A technology for rapid reconstruction of moss-dominated soil crusts. Environmental Engineering Science 25:1129–1137.
    OpenUrl
  84. ↵
    1. Yu J.,
    2. Glazer N.,
    3. Steinberger Y
    . 2014. Carbon utilization, microbial biomass, and respiration in biological soil crusts in the Negev Desert. Biology and Fertility of Soils 50:285–293.
    OpenUrl
  85. ↵
    1. Zaady E.,
    2. Kuhn U.,
    3. Wilske B.,
    4. Sandoval-Soto L.,
    5. Kesselmeier J
    . 2000. Patterns of CO2 exchange in biological soil crusts of successional age. Soil Biology and Biochemistry 32: 959–966.
    OpenUrlCrossRef
  86. ↵
    1. Zaady E.,
    2. Offer Z. Y
    . 2010. Biogenic soil crusts and soil depth: a long-term case study from the Central Negev desert highland. Sedimentology 57:351–358.
    OpenUrlCrossRefGeoRef
  87. ↵
    1. Zielke M.,
    2. Ekker A.S.,
    3. Olsen R.A.,
    4. Spjelkavik S,
    5. Solheim B
    . 2002. The influence of abiotic factors on biological nitrogen fixation in different types of vegetation in the high arctic, Svalbard. Arctic, Antarctic, and Alpine Research 34:293–299.
    OpenUrlCrossRef
  88. ↵
    1. Zielke M.,
    2. Solheim B.,
    3. Spjelkavik S.,
    4. Olsen R. A
    . 2005. Nitrogen fixation in the high arctic: Role of vegetation and environmental conditions. Arctic Antarctic and Alpine Research 37:372–378.
    OpenUrlCrossRefWeb of Science
PreviousNext
Back to top

In this issue

Ecological Restoration: 37 (2)
Ecological Restoration
Vol. 37, Issue 2
1 Jun 2019
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Front Matter (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Ecological Restoration.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Restoration of Ecosystem Function by Soil Surface Inoculation with Biocrust in Mesic and Xeric Alpine Ecosystems
(Your Name) has sent you a message from Ecological Restoration
(Your Name) thought you would like to see the Ecological Restoration web site.
Citation Tools
Restoration of Ecosystem Function by Soil Surface Inoculation with Biocrust in Mesic and Xeric Alpine Ecosystems
Annie-Claude Letendre, Darwyn S. Coxson, Katherine J. Stewart
Ecological Restoration Jun 2019, 37 (2) 101-112; DOI: 10.3368/er.37.2.101

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Restoration of Ecosystem Function by Soil Surface Inoculation with Biocrust in Mesic and Xeric Alpine Ecosystems
Annie-Claude Letendre, Darwyn S. Coxson, Katherine J. Stewart
Ecological Restoration Jun 2019, 37 (2) 101-112; DOI: 10.3368/er.37.2.101
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • Methods
    • Results
    • Discussion
    • Conclusion
    • Acknowledgments
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • Biodiversity in mountain soils above the treeline
  • Google Scholar

More in this TOC Section

  • Measuring Success
  • Spring Floral Community in a Kentucky Forest Influenced by Amur Honeysuckle (Lonicera maackii) Density and Removal
  • Seed Germination for Restoration in a Challenging Species
Show more Research Articles

Similar Articles

Keywords

  • biological soil crusts
  • nitrogen fixation
  • extracellular polysaccharides
  • inoculation
UW Press logo

© 2025 Board of Regents of the University of Wisconsin System

Powered by HighWire