Ecological Restoration

Volume 37, Number 3	September 2019
In Memory of Erin K. Espeland Myla F.J. Aronson	139
Editorial The Living Dead and the Practice of Landscape Restoration Steven N. Handel	140
RESTORATION NOTES Caloric Values of Selected Wetland and Coastal Sage Scrub Vascular Plant Seeds Peter A. Bowler, Jenny Liou and Jocelyn Moon	142
Promoting Change in Common Tern (<i>Sterna hirundo</i>) Nest Site Selection to Minimize Construction Related Disturbance Peter C. McGowan, Jeffery D. Sullivan, Carl R. Callahan, William Schultz, Jennifer L. Wall and Diann J.	143 I. Prosser
Mycorrhizae and Root Morphology in Potted and Wild Artemisia californica and Eriogonum Christopher.M. Gunawan and Peter A. Bowler	fasiculatum 148
ARTICLES Arbuscular Mycorrhizal Fungi in the Rhizosphere of Saplings Used in the Restoration of the Rupestrian Grassland Etiene Silva Coutinho, Wallace Beiroz, Milton Barbosa, João Henrique de Azevedo Xavier and G. Wilson	152 n Fernandes
Five Decades of Wetland Soil Development of a Constructed Tidal Salt Marsh, North Carolin Aaron Noll, Courtney Mobilian, and Christopher Craft	na, USA 163
An Adaptive Managed Retreat Approach to Address Shoreline Erosion at the Kennedy Space Center, Florida M. Rebecca Bolt, Mark A. Mercadante, Timothy J. Kozusko, Stephanie K. Weiss, Carlton R. Hall, Jane A. Naresa R. Cancro, Tammy E. Foster, Eric D. Stolen and Scott A. Martin	. Provancha,
Restoration of Society-Nature Relationship Based on Education: A Model and Progress in Patagonian Drylands Daniel Roberto Pérez, Florencia del Mar González, María Emilia Rodríguez Araujo, Daniela Ailín Pared	182 des and Elsa Meinardi
Biocultural Species Enhancement in the Archaeological Site of Tzintzuntzan, the "Place of Hummingbirds" Marina Barajas-Arroyo, Brenda Brown, José Luis Punzo, Jorge E. Schondube, Ian MacGregor-Fors and I	192 Roberto Lindig-Cisneros

ABSTRACTS

Climate Change	199	Propagation & Introduction	202
Coastal & Marine Communities	199	Reclamation, Rehabilitation, & Remediation	203
Ecological Design	200	Species at Risk	203
Economics & Ecosystem Services	200	Technology & Tools	203
Grasslands	201	Traditional and Local Knowledge	204
Invasive & Pest Species	201	Urban Restoration	204
Lakes, Rivers, & Streams	201	Wetlands	204
Monitoring & Adaptive Management	202	Wildlife Habitat Restoration	204
Planning and Policy	202	Woodlands	205
MEETINGS			206

Erratum for Vol. 37, No. 1, 2019

For the front cover image, the photo was incorrectly labeled as being located in Minnesota, but should have been labeled as a site in Illinois. We apologize for any inconvenience.

Front Cover Feature: Since 1999, erosion along the Kennedy Space Center coastline in Florida has increased as a result of frequent storm surges. To protect valuable national assets and infrastructure at the site, a system of created dunes has been installed. In a case study, Bolt et al. document how these created dunes have benefitted two protected wildlife species: *Gopherus polyphemus* (gopher tortoise, whose footprints are pictured here) and *Peromyscus polionotus niveiventris* (southeastern beach mouse). Image credit: Rebecca Bolt

Back Cover Features:

Top: Marshes are often nitrogen limited even though sufficient nitrogen (N) and carbon (C) are critical to sustain plant productivity and support biogeochemical processes such as decomposition and denitrification in these systems. Noll et al. examined the development of wetland soils over five decades in a constructed salt marsh. Their findings help restoration ecologists identify target soil properties such as bulk density, C, N, and C:N, for gauging wetland restoration success and estimating the time frame necessary for recovery. Image credit: Christopher Craft. Middle: In the arid and semiarid regions of Patagonia, Argentina, millions of hectares have been desertified by cattle ranching and hydrocarbon extraction activities. Restoring habitat in this region is a large undertaking that requires cooperation among diverse landholders. Through a case study, Pérez et al. present a multi-step and multi-year model for Environmental Education (EE) developed to engage stakeholders in ecological restoration. As a result of the EE process, residents worked cooperatively with government and industry to establish native species nurseries and revegetate degraded lands. Image credit: Daniel Pérez.

Bottom: Biocultural restoration aims to reestablish both the ecological and cultural components at a site. Hummingbirds have been a culturally relevant wildlife group in Mexico since pre-Columbian times but are absent from many cultural heritage sites due to ecological degradation. To help re-establish a connection between people and their cultural and natural heritage, Barajas-Arroyo et al. conducted biocultural species enhancement at an archaeological site. They report on vegetation parameters necessary to attract target hummingbird species, and document how this enhancement has impacted visitor experiences at the site. Image credit: Roberto Lindig-Cisneros